Skip Navigation

InitialsDiceBearhttps://github.com/dicebear/dicebearhttps://creativecommons.org/publicdomain/zero/1.0/„Initials” (https://github.com/dicebear/dicebear) by „DiceBear”, licensed under „CC0 1.0” (https://creativecommons.org/publicdomain/zero/1.0/)AK
Posts
0
Comments
53
Joined
2 yr. ago

  • Now instead of just querying the goddamn database, a one line fucking SQL statement, I have to deal with the user team

    Exactly, you understand very well the purpose of microservices. You can submit a patch if you need that feature now.

    Funnily enough I'm the technical lead of the team that handles the user service in an insurance company.

    Due to direct access to our data without consulting us, we're getting legal issues as people were using addresses to guess where people lived instead of using our endpoints.

    I guess some people really hate the validation that service layers have.

  • people who've never been laid

    That was unnecessary. I know that people with poor social skills have more trouble with romance, but implying that all virgins are socially inept is a harmful stereotype, luck is a big factor in finding relationships.

  • It's absolutely amazing, but it is also literally and technologically impossible for that to spontaneously coelesce into reason/logic/sentience.

    This is not true. If you train these models on game of Othello, they'll keep a state of the world internally and use that to predict the next move played (1). To execute addition and multiplication they are executing an algorithm on which they were not explicitly trained (although the gpt family is surprisingly bad at it, due to a badly designed tokenizer).

    These models are still pretty bad at most reasoning tasks. But training on predicting the next word is a perfectly valid strategy, after all the best way to predict what comes after the "=" in 1432 + 212 = is to do the addition.

  • More than 33,000 Palestinians have been killed in Israel’s offensive, around two-thirds of them women and children, according to Gaza’s Health Ministry. Its count doesn’t distinguish between civilians and combatants.

    In the 33 000 figure Hamas combatants are included.

    I'd say at least 20000 innocent civilians killed since the start of the conflict. Probably more as Israel seems to be quite trigger happy on civilians.

  • Now let's look at Office. Open an Excel spreadsheet with tables in any app other than excel. Tables are something that's just a given in excel, takes 10 seconds to setup, and you get automatic sorting and filtering, with near-zero effort. No, I'm not setting up a DB in an open-source competitor to Access. That's just too much effort for simple sorting and filtering tasks, and isn't realistically shareable with other people.

    Am I missing something or isn't it exactly the same thing in libre office ?

  • I don't believe that there are solutions that are as complete as team, for video and voice calls it's among the best.

    But it's so bad for text ! Why do I have to wait for a second when I change channels ? Why does it not support markdown (the partial implementation that it has is arguably worse than no implementation at all) ? Why is the search so bad ?

  • Rule

    Jump
  • And cow feed is also grown with tons of pesticides and you need much more of it for less tissue at the end.

    I have hard time seeing clothing with a bigger environmental than leather.

  • This is not true in France. Politicians that have proven fraud are arrested and charged. In France we have Sarkozy, Cahuzac, Fillon that were all charged with crimes.

    They were president, minister and presidential candidate respectively. I'd be surprised if it was different in the USA. I'm seeing that trump is also being charged, the system seems to be working.

  • I don't agree. Curvy roads are dangerous, but there are much more conflicts in cities. You're not going to have many pedestrians in curvy mountain roads.

    That said, you are right that the ideal comparison would be int the same city. But I'm not sure that the data exists, I'll have to look this afternoon.

    That said, even if my data is not perfect, it's much better than taking one accident and saying that self driving cars are dangerous. They are not going to be magically better than humans, after all driving is a difficult task, but we should at least crunch the numbers before dismissing them.

  • These models do not see letters but tokens. For the model, violet is probably two symbols viol and et. Apart from learning by heart the number of letters in each token, it is impossible for the model to know the number of letters in a word.

    This is also why gpt family sucks at addition their tokenizer has symbols for common numbers like 14. This meant that to do 14 + 1 it could not use the knowledge 4 + 1 was 5 as it could not see the link between the token 4 and the token 14. The Llama tokenizer fixes this, and is thus much better at basic algebra even with much smaller models.

  • Yes to your question, but that's not what I was saying.

    Here is one of the most popular training datasets : https://pile.eleuther.ai/

    If you look at the pdf describing the dataset, you'll find the mean length of these documents to be somewhat short with mean length being less than 20kb (20000 characters) for most documents.

    You are asking for a model to retain a memory for the whole duration of a discussion, which can be very long. If I chat for one hour I'll type approximately 8400 words, or around 42KB. Longer than most documents in the training set. If I chat for 20 hours, It'll be longer than almost all the documents in the training set. The model needs to learn how to extract information from a long context and it can't do that well if the documents on which it trained are short.

    You are also right that during training the text is cut off. A value I often see is 2k to 8k tokens. This is arbitrary, some models are trained with a cut off of 200k tokens. You can use models on context lengths longer than that what they were trained on (with some caveats) but performance falls of badly.

  • There are two issues with large prompts. One is linked to the current language technology, were the computation time and memory usage scale badly with prompt size. This is being solved by projects such as RWKV or mamba, but these remain unproven at large sizes (more than 100 billion parameters). Somebody will have to spend some millions to train one.

    The other issue will probably be harder to solve. There is less high quality long context training data. Most datasets were created for small context models.

  • Didier Raoult for a large part. He was the one who published the paper that really started this whole mess. His shoddy research practices and non-respect for patients did plenty of harm.

    Good thing that they've forced his retirement.